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Abstract 

With the  success of Mars  Pathfinder’s  Sojourner 
rover,  a  new  era of planetary  exploration  has  opened, 
with  demand for highly capable mobile  robots.  These 
robots must  be able to  traverse  long  distances  over 
rough,  unknown  terrain  autonomously,  under  severe 
resource  constraints.  Based on  the  authors ’ firsthand 
experience  with  the  Mars  Pathfinder  mission,  this  pa- 
per  reviews  issues  which are critical for successful  au- 
tonomous  navigation of planetary  rovers. No currently 
proposed  methodology  addresses  all of these  issues. W e  
next report on  the “Wedgebug”  algorithm,  which  is  ap- 
plicable to  planetary  rover  navigation in SE(2). The 
Wedgebug  algorithm  is  complete,  correct,  requires min- 
imal  memory for storage of i ts  world  model,  and  uses 
only on-board sensors,  which are  guided b y  the algo- 
rithm  to  eficiently  sense  only  the  data needed for mo- 
tion  planning.  The  implementation of a version of 
Wedgebug on  the  Rocky7  Mars  Rover  prototype  at  the 
Jet  Propulsion  Laboratory (JPL) i s  described,  and  ex- 
perimental  results  from  operation in simulated  martian 
terrain are presented. 

1 Introduction 

The recent  Mars  Pathfinder  experience  vividly ill- 
lustrated  the benefits of including a mobile robotic ex- 
plorer on  a  planetary mission. Previous forays allowed 
scientists to  explore  planets  remotely,  via an  orbiter, 
or were limited to  a  single site for study with a lander’s 
instruments. However, the Sojourner rover, carried to 
Mars by the  Pathfinder  spacecraft, was able to roam 
and  to place its  instruments  (a  spectrometer  and low- 
mounted cameras)  directly  on or  near  objects of inter- 
est. In  all, the Sojourner rover ranged over an  area 
roughly 20 meters  square,  conducted soil experiments 
in a  variety of terrains,  and  sampled  the  spectra of 16 
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distinct  targets.[6] Missions currently being  planned 
call for new rovers to be  sent t o  Mars at launch  oppor- 
tunities in 2001, 2003, and 2005, as well as a  nanorover 
to be sent  to  the surface of an asteroid in 2003. Many 
of these missions require the rovers to  operate for up 
to a  year,  compared  with the  83 sols (martian  days) 
of operation for the Sojourner rover. The rovers are 
also required to traverse  greatly  vaster  distances:  up 
to 100 m/sol, as opposed to Sojourner’s 104 m/83 sols. 
In  addition, lessons learned from Mars  Pathfinder in- 
dicate  a need for significantly  increased rover auton- 
omy in order to meet mission criteria,  within severe 
constraints  including  limited  communication  opportu- 
nities with  Earth, power, and  computational capacity. 

1.1 Motion Planning on  Mars 

A key advance in functionality  required for plan- 
etary rovers is greater navigational  autonomy.  Each 
rover will be working in unknown,  rough terrain.  (The 
resolution  expected  from  Mars orbiters, for example, is 
roughly 300 meters/pixel,  with  only  isolated  “postage 
stamp’’ regions achieving the highest  resolution of 1.4 
m/pixel.[7] Orbiter  camera  pointing  limitations pro- 
hibit  attempting  to use these  highest-resolution im- 
ages for rover navigation or localisation.) Given a dis- 
tant (i.e.,  not  immediately visible by the rover’s sen- 
sors)  goal  designated by Earth-based  operators,  the 
rover must use its sensors to navigate  safely  and  au- 
tonomously to  that goal. Rather  than  address all of 
the issues which arise in this complex  problem,  this pa- 
per will focus on  the  aspects relevant to  autonomous 
path  planning. 

Useful motion  planners for planetary rovers have 
several key characteristics:  they  must  assume no prior 
knowledge of the environment,  must  be  sensor-based, 
robust,  complete  and  correct.  They  must also operate 
under severe constraints of power, computational ca- 
pacity, and  the high cost of fight  components, which 



t,r;trlsl;ttrls into  limited  mcmory tlvdtlble  on-board  the 
rovvr. Dur> to dead reckoning errors,  slippage on 
rough/looso sllbstrate, nonholonornic fine-positioning 
c:onstr;tirlts, i111d constraints  on mission time available, 
using tovcr motion to  augment sensing is costly. Si- 
multaneously,  limited memory, computational capac- 
ity, power and  time available  all  argue for minimis- 
ing the  amount of data sensed and processed. Thus, 
a  practical  motion  planner  must  utilise the available 
sensing array in a  scheme which efficiently  senses  only 
the  data needed for motion  planning,  requires  minimal 
memory to  store salient  features  of the environment, 
and conserves rover motion. 

2 Relevant Work 

Much of the  body of work in motion  planning  can  be 
divided  into three  major categories: ‘‘classical” path 
planners,  heuristic  planners,  and  “complete  and cor- 
rect”  sensor-based  motion  planners.  “Classical”  plan- 
ners  assume  complete knowledge of the environment, 
and  are complete.  Heuristic  planners,  generally  based 
upon  a  set of “behaviours,”  can  be used in unknown 
environments  but  do not guarantee  the goal will ever 
be  reached,  nor that  the algorithm will halt. (A more 
detailed discussion is presented  in [5].) The  third  cat- 
egory, which relies solely upon the rover’s sensors and 
yet  guarantees  completeness, is most  relevant to  the 
problem of autonomous  planetary  motion  planning. 

Two  distinct  approaches to  such  planners  have been 
explored,  both of which adapt classical methods  to a 
local sensed region. One set of methods  incrementally 
builds  “roadmaps”  within the visible  region,  such as 
Choset’s  HGVG [2], Rimon’s adaptation of Canny’s 
OPP  [I], and the “Tangent  Bug”  algorithm of Kamon, 
Rivlin, and Rimon[S]. The  other approach  springs 
from approximate cell decomposition, filling in a grid- 
based world model as more  information is gathered, 
exemplified by Stentz’ D* algorithm. [9] 

Figure 1: Typical  terrain  encountered  on  Mars by the 
Sojourner rover. The intrepid  mobile  explorer is 68cm 
long by  48cm wide,  and stands 28cm tall. 

Figure 2: Rangemap of a single image from a  stereo 
pair.  This image also shows  obstacles  detected  within 
the visible region, and a path generated by the imple- 
mentation of the LIRoverBug”  algorithm  on  Rocky7 
(see Section 5) 

The above methods have each been developed to 
differing degrees in their  application to real  systems. 
For example, the sensor-based version of OPP is cur- 
rently  strictly  theoretical, owing to  the difficult-to- 
implement  nature of the sensors  required. The HGVG, 
on the  other  hand,  has been  implemented on a mobile 
robot using range  sensors.  Choset’s  planner  produces 
paths which are  maximally  distant from  obstacles,  a 
plus for rover safety. However, it works best in con- 
tained  environments  with well-defined corridors;  a de- 
scription  not  applicable to  the typical  martian envi- 
ronment  (Fig. 1). 

The D* algorithm  and  Tangent Bug both  are useful 
in unbounded  environments.  In  addition,  they  both 
produce “locally optimal”  solutions,  that is, the re- 
sultant  paths  are  the  shortest length possible given 
the use of solely local information. D* has in particu- 
lar  been  implemented on a real world system (an au- 
tonomous  HMMWV  driven in a  slag  heap  near Pitts- 
burgh). However, the grid-based world model requires 
a  significant  amount of memory for storage,  and  the 
algorithm’s  completeness  depends  entirely  upon the 
precision of its world model, which is detcrmined by 
cell granularity. 
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Tangcnt Bug provides the motivation for the work 
prcscntftci here. Its world model is streamlined, con- 
sisting only of sensed  obstacle  boundary  endpoints. 
Thc planner itself consists of two “modes”- motion- 
to-goal,  and boundary following-which interact in- 
crementally to ensure  global convergence (if the goal 
is reachable),  and which “fail gracefully” if the goal 
is found to be out of reach. Thus,  the  algorithm is 
memory-efficient, fairly robust,  and conserves robot 
motion. However, some of its  assumptions  do  not  ap- 
ply to  the “rover problem” of navigating in planetary 
terrain. For example,  Tangent  Bug  assumes that  the 
robot is modelled as a point,  and  that obstacles block 
both motion and  sensing.  In  addition,  Tangent  Bug 
assumes that  the  robot’s sensor provides an omnidi- 
rectional view. 

The  current  scenario for a rover sensing system con- 
sists of a  stereo  pair of cameras mounted on a  pan- 
able  mast. Typically, these  cameras have a 30’ to  
45” field of view (FOV), and  the “visible region” con- 
nected  with these sensors  sweeps out roughly  a wedge, 
with  limited  downrange  radius R due  to  both viewing 
angle (tilt)  and  feature resolving  ability.  (See  Fig. 2 
for an example of data from  such a sensing  array.) 
(Camera pixels imaging features closer to  the horizon 
(hence  farther away)  have a larger  footprint than pix- 
els imaging the foreground;  simultaneously,  obstacles 
furt,her away are  apparently  smaller in relative size. 
These  two  properties  combine to  limit the range at 
which a  stereo  pair  can resolve obstacles of a given 
height, for instance.) From the discussion in Section 
1.1, it is clear that  it  is important  to not  simply  pan 
the sensor array  and  obtain  an  omnidirectional view at 
every step.  Rather,  the  planner should be  able to  iden- 
tify the minimal  number of sensor  scans needed-and 
which specific areas  to scan-to proceed a t  each  step, 
while avoiding unnecessary rover motion. Thus, we 
have developed the “Wedgebug”  algorithm to  address 
the shortcomings of Tangent  Bug, as a step  towards 
a  more  practical path planner for flight microrovers. 
Wedgebug is complete,  correct,  and relies solely upon 
the robot’s  sensors. The implementation discussed in 
Section 5 relaxes the  assumption  that  the rover is a 
point robot.  Perhaps  most  importantly, Wedgebug 
deals  with the limited FOV of flight rovers in a man- 
ner which is efficient and minimises the need to sense 
and  store  data, using autonomous gaze control. 

Section 3 presents the Wedgebug  algorithm in some 
detail.  Section 4 develops the proof of completeness 
for this  motion planner.  Section 5 describes briefly 
the  current  implementation of an extended  Wedgebug 
on a  prototype  microrover a t   JPL,  with  experimental 
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Figure 3:  Anatomy of a wedge. 

results.  Section 6 contains  concluding  remarks. 

3 The Wedgebug Algorithm 

The basic assumptions of the Wedgebug  algorithm 
are as follows: The rover is modelled as a  point  robot 
in a 2D binary  environment  (i.e.,  every  point in the 
environment is either  contained  within an impassable 
obstacle, or lies in freespace).  (In  Section 5, we discuss 
how the implementation  deals  with the fact that  the 
real robot is not  a  point  robot.)  Obstacles’  boundaries 
block sensing as well as motion. The rover’s sensing 
array,  from  position x ,  detects ranges  within  a wedge 
W ( x , q  of radius R, which sweeps out  an angle 2a 
(> 0 )  and is centered on  the direction v’. (All  vectors 
are  assumed to have unit  length.) Define C as the 
arc  boundary of W ( x ,  G) at radius R, and dW(x ,  i7)  as 
the union of the two  bounding  rays of W ( x , q  (Fig. 
3). We further define the “interior” of W ( x , q  as 
int(W(x, v’)) = W(x,G) - d W ( x ,  C) (N.B., an “inte- 
rior” point  may lie on C) .  Let d(a, 13) be  the Euclidean 
distance between points a and 6. 

Wedgebug, like Tangent  Bug, is based  upon  two 
modes which interact  to  ensure global convergence: 
motion-to-goal ( M t G )  and boundary  following ( B F ) .  
However, each  mode is more finely divided into com- 
ponents that improve efficiency and  handle  the lim- 
ited FOV. A high-level sketch of the operation of the 
Wedgebug  algorithm follows: At  the beginning of the 
path sequence, an initialisation step records the pa- 
rameter  dLEAvE = d(A,T) ,  where  A is the robot’s ini- 
tial  position,  and T is the goal. This  parameter  marks 
the largest  distance the  robot  can  stray from goal dur- 
ing an MtG segment. MtG is typically the  dominant 
behaviour. I t  basically directs  the  robot  to move to- 
wards the goal using a local version of the  tangent 
graph,  restricted to  the visible region (Fig.4). MtG 
works roughly as follows: The  robot  (at position x )  
first senses  a wedge, WO = W(x,v’o), where 60 = a 
is the vector from x to  the goal. (All wedges in the 
subsequent discussion are  assumed  to  subsume a  half- 
angle a.) The  tangent  graph consists of all line seg- 



Figure 4: LTG  calculated  within W(z,Zo). 

ments in freespace  connecting the  initial  position,  the 
goal,  and all obstacle  vertices,  such that  the segments 
are  tangent  to  any  obstacles  they  encounter.[4]  Let 
LTG(S) be the local tangent  graph restricted to  a  set 
SI defined as the  tangent  graph  restricted  to S. The 
planner  constructs  LTG(W0). If there  are  no  obsta- 
cles intersecting the  ray x?, the planner  adds a node 
Tg to LTG(W0) at a  distance R from z along z?, so 
LTG(W0)  contains  a  path  directly  towards T.   The 
planner  then  searches  a  subgraph,  Gl(W0) = {V E 
LTG(Wo)l d(V,T) I min(d(z,   T) ,   dmVE)) ,  for the OP 
timal local subpath. Using the  criterion discussed in 
Section 3.1, the rover  may scan  additional wedges as 
needed, and  constructs  the  LTG  in  the  conglomerate 
wedge, w(z). After  executing  this  subpath,MtG be- 
gins anew.  This  behaviour is continued  until  either 
the goal is reached, or the  robot  encounters a local 
minimum in d(z ,  T ) ,  which corresponds to  a block- 
ing obstacle.  In  the  latter  case,  the  planner  switches 
to B f .  The  objective of this  mode is to  skirt  the 
boundary of the blockang obstacle (the  obstacle whose 
boundary  contains  the local minimum),  still  calculat- 
ing LTG(Wo),  until  one of two  events  occur:  either 
the  robot  completes  a  loop,  in which  case the goal 
is unreachable  and  the  algorithm  halts; or LTG(W0) 
contains  a new subpath  toward  the goal. The  next 
two  sections  describe the MtG and BF modes in  more 
detail. 

3.1 Motion-to-Goal 

During  MtG, the  robot moves  toward a point (fixed 
for each step), called the focus point, F (Fig 4). This 
point serves as the goal for each MtG step.  Its  position 
within the  robot’s FOV also  determines  whether  ad- 
ditional  wedge  views  are  needed.  Initially, F = {V E 
Gl(m(z))l d(V,T) 5 d(V’,T),VV’ E G l ( F ( z ) ) } .  
That is, since LTG(w(z))  reduces  in  this  environment 
to  simple edges  connecting the  robot  to  the sensed  ob- 
stacle  boundary  endpoints, F simply  marks  the direc- 
tion for the  robot  to  travel  during  this  step  to minimise 

its distance  to  the  goal. 
If F E int(W(z, & ) ) ,  the rover simply  executes the 

subpath  to F ,  and  starts  the next MtG step. (N.B., for 
purposes of the proof to be given later,  the  robot never 
lies directly  on an  obstacle  boundary do, but  rather 
remains  a distance E away.) We call this case  a direct 
MtG segment,  where the  robot moves toward  the goal 
through freespace. (This is the case illustrated in Fig. 

If, on the  other  hand, F E d W ( s , Z o ) ,  the plan- 
ner must  inspect the  tangent  to dO at  F, &! to see 
whether the  robot will be “sliding around”  the block- 
ing obstacle, or if it  has possibly  encountered  a local 
minimum in  d(.,  T). If t ‘ ~  . a 5 0, the  robot would 
need to increase its  distance from the goal to  skirt  the 
obstacle  on the  subsequent  step. So, if allowed, the 
planner  researches  Gl(W0) for the  next  optimal  sub- 
path, disallowing the rejected  position for F ,  and  tests 
the new t ’ ~ .  (By the  triangle  inequality, if F E am, 
then  the new F must lie on  the opposing  bounding 
ray of w.) Changing F is not allowed if (1) F has 
already  been  changed  once at  x ,  or (2) the change 
would violate the detour  condition. This  condition 
prevents  the  robot  from  oscillating between  two di- 
rections,  resulting  in an  unduly  lengthy  path, unless 
a clear advantage is gained  by  changing F .  The de- 
tour  condition states  that  the  algorithm must  track F, 
even as  it “slides” around do, and may not switch this 
point to a rival point y unless d(y, T )  < d(F ,T)  and 
d(F, T )  - d(y, T )  > dthresh > 0. If the new TF 5 0 
(or F cannot  be  changed),  the  robot  has  encountered  a 
local minimum in d(.,T).  Thus,  the planner  switches 
to  BF(described  in  Section 3.2). 

In  the case that F E d W ( x ,  a), but T F . ~  > 0, the 
robot  must “slide around’’ the obstacle  while progress- 
ing toward T.  Unfortunately,  being close to  an obsta- 
cle restricts  the  robot’s  already-limited view and  can 
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Figure 5: “Virtual  MtG.”  The figure on  the left de- 
picts  the first part of an MtG step.  The nodes of 
LTG(W0) are  marked. F satisfies the conditions for 
“virtual  MtG,” so the  robot  scans W1 (right). Now, 
F E int(W0 U Wl) ,  so “virtual MtG” ends. 



Figure 6: “Virtual B f . ”  The figure  on  the left depicts  the first part of a  “virtual B f ”  step.  The nodes of 
LTG(W0)  are  marked  with black circles. Since $V E int(LTG(Wo)),  the  robot  scans W1 (center).  Again, 
$V E int(LTG(W0 u Wl)), so the  robot  scans W-1 (right). Now, V E int(W0 u W1 u W-l), so “virtual BF” ends. 

result in tiny  incremental  steps.  Thus, in order to effi- 
ciently  acquire data from the  robot’s  current  position 
and  to avoid as much inefficient motion as possible, 
we add  a  submode of MtG,  called “virtual MtG”. The 
object of Virtual MtG” is to  sense  additional wedges 
in the  direction  the  robot will “slide around”  the ob- 
stacle,  and  to  generate  a  local  shortcut  in  the  robot 
path. 

“Virtual MtG” mode  directs  the  sensing  array  to 
pan  towards F (defining this  direction of rotation 
positive), and  to sense the wedge W1 = W(z,Gl), 
where L ( 3 , G k )  = 2 k a  (that is, WI abuts WO at 
F ) .  Let w = Wo u W1 (in  general, a t  each  position 
z, v ( z )  = Usensed W%(z)). The planner  computes 
Gl (w) ,  and  finds  the new focus  point F. Let av+ 
be the  bounding  ray r‘ such that L(&?,q > 0 (i.e., 
the edge of in the positive direction). If F E aw+, 
“virtual MtG” is repeated.  This  mode  ends if one of 
three  conditions is met: 

F E in t (w) ,  in which  case the  robot  has found 
a suitable  shortcut.  The  robot  executes  the sub- 
path  to F ,  and begins  a new MtG iteration. 

L ( z , d w + )  1 n/2, which means  that  the rover 
is sensing  part of a  region not useful for MtG,  
since G1  contains  only  nodes closer to T than  the 
robot’s  current  position. 

t ‘ ~  . i?? 5 0, which indicates  that  the  obstacle 
boundary is curving  back  toward x ,  that is, the 
robot  can no  longer “virtually slide” in this direc- 
tion  without losing ground. 

In fact, (2) ==-=+ (3). In  these cases, if allowed, 
the  robot changes F as discussed  above, and  attempts 
“virtual MtG” again. If the second  attempt fails, the 
robot has encountered a local minimum  in  d(., T ) ,  and 
the  planner  switches  to BF. 

3.2 Boundary Following 

The basic idea of BF is to  skirt  the blochng obsta- 
cle until progress can  be  made  once  more  toward  the 
goal. As with M t G ,  BF is split  into  two  submodes. 
“Normal BF” uses two  wedge  views, one  toward the 
goal and  one  in  the  direction of travel  around  the ob- 
stacle  boundary,  to  determine  whether a clear  path to- 
wards the goal  exists  while the  robot  circumnavigates 
the  obstacle.  Immediately  after a switch  from MtG to 
BF, however, the  robot  must  determine  its  direction 
of travel  around doh, the blocking obstacle.  “Virtual 
Bf”  is used to  take full advantage of the information 
which can  be gleaned at  the  current  distance from the 
obstacle  (arguably  more  than from a closer range),  to 
choose this  direction efficiently. (The  primary motiva- 
tion for “virtual B f ”  is the idea that  it is less costly 
for the  robot  to swivel its  sensors  than for the robot 
to  actually move.) In essence, the  robot will swing its 
sensor array back and  forth in a  prescribed  manner,  to 
search for the “best”  place to  move and begin  “normal 
B f ” .  

More precisely, the  robot  initially  scans  the wedge 
W1 = W(z,Gl), where in  this  case  the positive direc- 
tion is chosen by comparing the  tangents  to dOb at 
the intersection  with aW0; that is, if are  the two 
tangents  (at el and e,, respectively), if 6 .Go 2 fr . GO, 
then L(G,-,,zT) > 0. As before, let s;i7 = WO U W1. 
The  planner  computes LTG(w) If 3 a  node V E 
LTG(m) such that V E int(w),   the robot moves to V 
and begins  “normal BF”, first recording  two  features: 
dTeach,  the closest point to T encountered so far on 
doh, and ~ / i ~ ~ ~  = 8’V- n doh. If there is no  such 
node V ,  the planner  directs the sensing  array  to  scan 
w - ~  = ~ ( x , v ’ _ l ) ,  constructs TV = w0 u W1 u W-1, 
and  searches  the freshly expanded LTG(m).  In  this 
manner,  the  robot  scans back and  forth  until a suit- 
able  node is found,  then  travels  there to  begin “normal 
BF.” 



“Virtual BF” ends when one of three cvent,s are 
clt:tected: 

1. 3” E LTG(m) ndob such that V E int(m).   The 
robot moves to V ,  and begins  normal BF. 

2. The  latest  scanned wedge  overlaps  a  previously 
scanned  region (Le., I L ( f l ~ , & ~ ~ ) l  > x ) .  In  this 
case,  the  robot is trapped by an encircling obsta- 
cle, and  the  algorithm  halts. 

3. 3V E LTG(m) with V E int(m),  but V 41 
dOb sensed.  In  this  case, we call v a  “fram- 
ing point,”  since it “frames” the sensed extent 
of aOb. The  robot  scans  once  more in the op- 
posing direction,  and  then  no  matter  the  out- 
come,  “virtual BF” ends. If a  node as in  item 
1 is found, the  robot moves there  and begins  nor- 
mal BF. Otherwise, the rover moves to  the point 
on dOb just before the “framing  node” (if there 
are two, I4 and V,, the rover moves to  I4 iff 
JL(G0,xX)I > IL(Go,x?)I). At this  point,  the 
rover  begins  normal BF. 

In  normal BF, at the  start of each  step,  the  robot 
senses WO, and  searches Gl(W0). BF exits  here if: 
(1) T E WO, in which  case the  robot moves to T 
and  the  algorithm is done, or (2) 3’ E Gl(W0) such 
that  d(V, T )  < dreach,  the leaving  condition, in which 
case the planner  resets dLEAvE to  d(V,T),  and be- 
gins  a new M t G  segment. If neither of these con- 
ditions  hold,  the  planner  computes & ,  the  tangent 
to dob at x,  and  directs  the  sensing  array  to  scan 
W(x,Fz). If Koop E W(x,Fz) ,  and KoOp E the con- 
nected  portion of do6 containing x ,  the  robot  has ex- 
ecuted  a loop-therefore, the goal is unreachable,  and 
the algorithm  halts.  Otherwise, the planner  computes 
V E dObnLTG(W(x, cz1) such that  d(x,  V) > d(z, V’) 
VV’ E dObnLTG(W(x, t z ) ) .  The robot  records  dreach, 
executes  this  subpath,  then  begins  a new BF step. 

The Wedgebug algorithm  thus  deals  with  the lim- 
ited  FOV of the  robot in an efficient manner.  The 
“virtual”  submodes  both  take  advantage of the lower 
cost of panning the sensor array over actual  motion, 
while  minimising the number of views  required at each 
step. 

4 Sketch of Proof of Convergence 

The proof of convergence of the Wedgebug algo- 
rithm is analagous to  the  Tangent Bug  convergence 
proof.[3]  The  sketch of the proof is as follows: Each 
robot  motion can  be  characterised as a  particular  type 

of’ motion segment,. In turn, each type pf segment 
can  be  shown  to  have finite length. Following Kamon, 
Rivlin,  and  Rimon, it can  be  shown that  there  are a 
finite number of each type of segment,  and  thus  the 
path  terminates  after  finite  length.  Due  to  space lim- 
itations, we will detail  here  only  the proof that BF 
segments  have  finite  length.  The  proofs for the  other 
types of motion  segments  are  analagous. 

Define the  points S, to be the  points where the plan- 
ner switches  from M t G  to  BF; Ma the local minimum 
point  associated  with S, (Le. the point STndO,) ;  La 
the  point where BF leaving  condition is met  on  obsta- 
cle i (switch  point  from BF to MtG);  and finally P,, 
marker to  detect loop  on  obstacle i ,  in BF(Pa = K o O p ) .  
Then,  there  are  two  types of BF segments: [Sa,  La], 
and [Si, Pi]. 

Lemma. BF segments are finite  length. 

Proof. Two cases: a) [Si, Li].  In  the usual  case, 
this  segment  can  be considered  a shortcut, com- 
pared to  the  path which  would be  taken by  a robot 
with  contact  sensors  executing  the  Tangent Bug al- 
gorithm.  The  “contact sensor  equivalent”  path con- 
sists of two pieces: [St, Mi], and [Mi, La , where Mi 
is the local minimum  (along the line Si b ) associ- 
ated  with  Si.  Let N designate  the  point where 
the  robot  actually  touches dOi during  this BF seg- 
ment.  By  the  triangle  inequality,  meas([&,  Li]) = 
d(Si,  N)+meas([N,  Li]) I d(Si,  Mi)+mea([Mi, N])+ 
meas([N,  Li]). We have that  d(Si, Mi) 5 d(Sa,T) 5 
d(dLEAV,,T)  (using  the  appropriate value for dLEAVE) 
5 d(A,T) < 00 (by  assumption). Also, since - M,, N ,  
and  Li  all lie on aOi,  and  the segments MaN and 
NLi  do  not  overlap;  and  since  the  obstacle perime- 
ter,  meas(dOi), is finite, we have meas([Mi,N]) + 
meas([N, L,]) = meas([M,,Li]) I meas(d0i) < 
00. Thus,  this  segment is (crudely)  bounded 
by meas([Si, L,]) I d(S,,Mi) + meas([Mi,  N]) + 
meas([N,Li]) L d(Si, Mi)  + meas([W, L,]) I 
d(Si lT)  + meas(a0i) 5 d(dLeAvE,T) + meas(d0i) < 
00. (Of  course, we also have that  d(S,, N )  i R, where 
R is the sensing range,  and R < 00 by definition.) 

b)  [&,Pi]. Similarly, meas([S,,Pi]) 5 d(S,,M,) + 
meas(d0i) < 00. 0 

- 

5 Implementation and Results 

An extended version of the Wedgebug algorithm, 
called “RoverBug,”  has  been  implemented on the 
JPL Rocky7 prototype microrover (Fig  7), a re- 
search vehicle designed to  test technologies for future 



Figure 7: The Rocky7 Prototype Microrover, devel- 
oped at  JPL  to  test technologies for future missions. 
It is pictured  here in the  JPL MarsYard, an outdoor 
testing  arena  featuring  simulated  martian  terrain. 

missions.[lO] The vehicle is roughly the  same size as 
the  Sojourner rover, with a few important differences 
which will come into play  in future rovers. (Refer 
to [5], [lo] for a fuller description.) Like Sojourner, 
Rocky7’s mobility system is a rocker-bogie suspension, 
capable of surmounting  obstacles 1i wheel diameters 
tall. However, Rocky7 boasts  three  stereo  pairs of 
cameras for navigation  (two  body  mounted,  and  one 
on  a  deployable 1.2m  mast) as opposed to Sojourner’s 
body-mounted  laser  striping  system. In addition,  the 
rover software features a  recently-developed  localisa- 
tion  algorithm  utilising  mast  imagery to  aid in dead- 
reckoning.[8] 

Although the Wedgebug  algorithm is an  important 
step,  it  still  does  not  quite  capture  the complexities of 
the real  world. For instance,  the rover is not a point 
robot;  a  problem  addressed  in the “RoverBug” imple- 
mentation by calculating the obstacles’  “silhouettes”: 
the smallest  polygon  bounding the projection of each 
SE(2)  obstacle  onto 8’. Another issue is the fact that 
the mast  imagery can “see over”  many  obstacles: the 
resulting  visibility  polygon is not  a  star-shaped set, 
and  the LTG is much richer than in the development 
in Section 3. Also, the  mast is limited in its  ability 
to sense  obstacles  within l m  of the rover,  since the 
obstacle  detection  algorithm  searches for steps in ele- 
vation,  not  easy to  detect while looking straight down 
on the  tops of rocks. Thus,  care must  be taken while 
executing the  subpaths. 

In brief, the scenario is as follows: The rover is 

situated in unknown,  rough  terrain.  The  remote hu- 
man operator  designates a goal, which sets in motion 
the  autonomous  planner.  The  planner begins by di- 
recting the mast to image  towards the goal. Software 
on-board  produces  a  rangemap,  detects obstacles, and 
computes the obstacles’ convex hulls. The  planner, 
which uses a version of the  theory described  above, 
then  computes the obstacles’  silhouettes,  and  searches 
the resulting LTG to  produce the first subpath.  The 
planner  directs the  mast  to look in the  appropriate di- 
rection(s),  and  incrementally  builds  and  executes  each 
subpath  until  the  goal is reached. 

The implementation so far has been  tested  exten- 
sively in the  JPL MarsYard, as well as in natural  ar- 
royo terrain.  Fig. 8 shows the results of one  typical 
run in the MarsYard. The goal was approximately 
21m distant from the  initial  position,  and R for each 
wedge was 5m. As in  Fig. 2, the convex hulls and sil- 
houettes  are  computed  within each wedge view, and a 
subpath  generated, which is executed before the next 
wedge view is taken.  The  resultant  multi-step  path 
runs  from lower right to  upper left. 

6 Summary and Conclusions 

The requirements for autonomous flight rovers for 
planetary  exploration provide  compelling  motivation 
to work in streamlined  sensor-based  motion  planning. 
This  paper  continues  the work  begun  in [5] to develop, 
implement,  and  test a robust,  practical  path  planner 
for the Rocky7 prototype microrover. The Wedgebug 
algorithm is described,  along  with  its proof of conver- 
gence. A  companion  paper will describe  in more detail 
the “RoverBug” planner,  the Wedgebug  extension im- 
plemented  on Rocky7. These  planners significantly 
augment  microrovers’ autonomous  navigation ability, 
which in turn will aid in producing successful mobile 
robot missions. 
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Figure 8: Results  from a multi-step  run in the JPL MarsYard. The  path begins  in the lower right  corner of the 
image?  toward a goal  approx. 21m distant  in  the  upper left.  Each wedge depicts  a  rangemap  produced  from  mast 
imagery,  and  extends  roughly  5m from the imaging  position. The obstacles  are  marked by a  black convex hull, 
and  a  grey  silhouette.  Each subpath  ends  with  an  apparent ‘Ljag” in the  path;  these  are  not in fact  motions,  but 
rather  the  result of the localisation  procedure  run at the conclusion of each step.  The second  line  echoing the 
path is the rover’s telemetry for the  run. 
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